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1 Executive Summary

The RESili8 project addresses the urgent need for a reimagined approach to resilience in Cyber-
Physical Energy Systems (CPESs), particularly in the context of the digital transformation of the
energy sector. Traditional resilience strategies, such as over-provisioning and physical redundancy,
are no longer sufficient to manage the increasing complexity, decentralization, and cyber-physical
interdependencies of modern energy infrastructures. RESili8 proposes a novel solution package
that integrates AI-based analysis, sustainable planning, and continuous validation to ensure secure,
efficient, and adaptive energy system operation.

One important part of the project is the development of an AI-based resilience analysis toolchain
that combines expert knowledge with machine learning techniques. This toolchain leverages System
Theoretic Process Analysis (STPA), Misuse Case (MUC) modeling, and Holistic Test Descriptions
(HTDs) to generate realistic and test cases. These test cases are used to train reinforcement learning
agents, enabling the identification of critical threat scenarios and the generation of reproducible lab
tests. The approach accelerates the development and validation of resilient energy applications.

To support the rapid and scalable validation of smart grid applications, RESili8 introduces the Auto-
mated Cyber-Physical Testing and Validation Framework (ACTV). It extends modern CI/CD pipelines
by integrating system-level validation capabilities, allowing developers to test their applications in real-
time simulation environments. ACTV supports modularity, reusability, and distributed collaboration,
making it a powerful tool for validating complex software ecosystems in the energy domain.

The project demonstrates the effectiveness of ACTV through a use case involving smart electric vehi-
cle (EV) charging. Using the CIGRE low-voltage distribution network as a benchmark, the validation
pipeline automates the deployment and testing of energy management systems (EMS) and control
algorithms. The results show that the EMS can successfully adapt to dynamic grid constraints, main-
taining power consumption within defined limits while optimizing EV charging behavior.

Another major focus of RESili8 is fault localization in heterogeneous distribution grids. The project
evaluates three complementary methods: ElectroMagnetic Time Reversal (EMTR), Lumped Param-
eter Single Feeder (LPSF), and a Partial Differential Equation (PDE)-based approach. Each method
is tested using both simulated and real-world data, with results highlighting their respective strengths
and limitations. EMTR offers high accuracy but is sensitive to network heterogeneity; LPSF is
lightweight but less robust in complex scenarios; and the PDE method provides high-fidelity mod-
eling for theoretical and feasibility studies.

The integration of these fault localization techniques enhances resilience by enabling early detection
and precise localization of faults, which is critical for minimizing downtime and improving system
reliability. The project also explores the use of data-driven and model-based estimators to improve
fault detection accuracy, particularly in high-ohmic and complex network conditions.

RESili8’s contributions extend beyond technical innovations to include methodological advancements
and collaborative practices. The project emphasizes the importance of combining expert knowledge
with AI, automating validation processes, and fostering cross-disciplinary collaboration. These prin-
ciples are essential for building resilient energy systems that can adapt to evolving threats and oper-
ational challenges.

The outcomes of RESili8 are validated through extensive simulations, lab testing, and real-world
data analysis. The project’s tools and frameworks are designed to be scalable, interoperable, and
adaptable to a wide range of energy system configurations. This ensures that the solutions developed
are not only effective in controlled environments but also applicable in diverse real-world contexts.

In summary, RESili8 delivers a comprehensive and forward-looking approach to resilience in CPESs.
By integrating AI-driven analysis, automated validation, and advanced fault localization, the project
sets a new standard for resilience engineering in the energy sector. Its results provide a solid founda-
tion for future research, development, and deployment of secure, intelligent, and sustainable energy
systems.
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2 Introduction

The transformation of energy systems into highly digitalized, interconnected infrastructures has intro-
duced unprecedented complexity and vulnerability. Traditional approaches to ensuring resilience—such
as over-provisioning and redundancy—are increasingly inadequate in the face of evolving cyber-
physical threats, distributed energy resources (DERs), and the integration of intelligent control sys-
tems. The RESili8 project addresses this challenge by proposing a novel resilience solution package
tailored for Cyber-Physical Energy Systems (CPESs). This package integrates AI-based analysis,
sustainable planning, and continuous validation to support the secure and efficient operation of fu-
ture energy systems.

The core motivation behind RESili8 is the recognition that resilience must be redefined for the digital
age. Rather than relying solely on physical redundancy, the project emphasizes intelligent, adaptive,
and proactive strategies that leverage expert knowledge, machine learning, and real-time testing.
This shift is essential to accommodate the increasing penetration of renewable energy sources, the
rise of prosumers, and the growing interdependence between information and operational technolo-
gies in the energy domain.

RESili8 brings together leading European research institutions, industry partners, and need-owners
to co-develop and validate its resilience framework. The project’s methodology is grounded in a multi-
layered approach that spans from conceptual modeling and AI-driven threat analysis to hardware-in-
the-loop (HIL) testing and real-world pilot demonstrations. This comprehensive scope ensures that
the proposed solutions are not only theoretically sound but also practically viable and scalable.

A key innovation of the project lies in its AI-based resilience analysis toolchain, which combines
System Theoretic Process Analysis (STPA), Misuse Case (MUC) modeling, and Holistic Test De-
scriptions (HTDs). This toolchain enables the generation of realistic, high-impact test cases for lab
validation, significantly accelerating the development and deployment of resilient energy applications.
Reinforcement learning techniques are employed to explore and evaluate complex threat scenarios,
enhancing the robustness of the resulting models.

In parallel, RESili8 introduces an Automated Cyber-Physical Testing and Validation Framework (ACTV)
that integrates seamlessly with modern CI/CD pipelines. This framework supports scalable, dis-
tributed testing of smart grid applications, bridging the gap between offline simulations and real-time
field validation. By enabling continuous integration of resilience testing into the software development
lifecycle, ACTV fosters a culture of proactive resilience engineering.

The project also explores advanced fault localization techniques for heterogeneous distribution grids,
comparing methods such as ElectroMagnetic Time Reversal (EMTR), Lumped Parameter Single
Feeder (LPSF), and Partial Differential Equation (PDE)-based modeling. These methods are evalu-
ated through simulations and real-world data to assess their effectiveness in detecting and localizing
faults under varying conditions.

Together, these innovations position RESili8 as a pioneering initiative in the field of energy resilience.
By combining theoretical rigor with practical implementation, the project aims to lay the groundwork
for a new generation of resilient, intelligent, and sustainable energy systems.

The rest of the document is structured as follows: Section 3 provides an overview of the AI-based
resilience analysis toolchain, Section 4 describes the rapid development and validation framework
and Section 5 provides an overview of the three different fault localization methods developed in the
project. Finally, conclusions are provided in Section 6.
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3 AI-Based Resilience Analysis: From Expert Knowledge to Test Case
Generation

The convergence of the energy grid, a critical national infrastructure known as the smart grid, from
both IT and OT perspectives necessitates the inclusion of expertise from grid operators and ICT spe-
cialists. This is crucial due to the implementation of ICT-based control systems, which are integrated
into the grid to manage volatile generation and prosumers efficiently. While enhancing usability, this
integration also introduces a heightened risk of errors and potential cyber attacks, consequently in-
creasing the likelihood of system failure [7,25,32].

Traditionally, the risk of failure within the energy system was mitigated by the redundancy of the phys-
ical system (following the N-1 rule) [7]. However, with the growing need for highly efficient power grid
operation, driven by extensive ICT integration, this approach is no longer sufficient. The integration
of ICT introduces its own set of risks, where the failure of physical systems can lead to the failure
of ICT systems and vice versa. Redundancy remains important, but it alone cannot address these
risks; new technologies such as secure communication protocols and encryption must be employed
for mitigation [25,32].

The power grid is transforming, rendering it highly non-deterministic as an overall system. The com-
plexity arises from the introduction of machine learning systems for optimization, the proliferation of
prosumer roles, the emergence of localized energy markets, and the significant contribution of dis-
tributed renewable energy sources (DERs) in achieving efficiency goals. Extensive simulations are
required to develop mitigations in response to these challenges [39,40].

RESili8 contributes to this development by adding new approaches for the resilient operation of en-
ergy systems as well as optimal and sustainable planning, AI-based analysis of resilient architectures,
and continuous implementation and validation of resilient applications.

In this work, we focus on developing fundamental methods that are essential for using threat and
hazard analysis to improve the learning capability of AI-based models. This comprehensive effort
includes developing and refining a specialized analysis tool based on Deep Reinforcement Learning
(DRL). The planned outcomes of this project will manifest themselves in the form of carefully crafted
formats suitable for human understanding and machine interpretation. These formats will play a
central role in facilitating model training processes and enable seamless integration with the intricate
nuances of AI-based learning methods.

Another critical aspect of the planned deliverables concerns the provision of datasets that serve as
a robust training and testing environment and thus contribute significantly to the iterative refinement
and validation of the developed AI models. Essentially, this work package is intended to contribute
to the convergence of threat and hazard analysis with state-of-the-art AI technologies and create a
symbiotic relationship between analytical findings and machine intelligence.

Here, we present a novel approach by combining System Theoretic Process Analysis (STPA) with
Misuse Case (MUC) templates as well as Holistic Test Descriptions (HTD) to accomplish a toolchain
that, with reinforcement learning embedding, analyses possible threat situations even further and
in more detail. This allows faster test case generation for lab-based testing, as the output of this
toolchain are lab specifications of explicit test cases. While STPA and MUCs enable expert knowl-
edge input into reinforcement learning experiments, the machine learning part in this toolchain allows
checking multiple parameters and set-ups faster than possible in a real-time lab. The situations
labeled as especially critical after training and testing the reinforcement learning agents are then
described in HTD to allow a reproducible lab test.

3.1 Knowledge Representation for AI-Based Models

During the RESili8 project, we conceptualized a comprehensive toolchain that begins with System
Theoretic Process Analysis (STPA), followed by AI experiment execution and test description. This
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toolchain is designed to assist software developers in the energy sector in identifying edge-test cases
for their software. These test cases contain all necessary information for the specific test environment
and its configuration.

Our approach integrates Misuse Case (MUC), Systems Theoretic Process Analysis (STPA), and
Holistic Test Description (HTD) in a hierarchical manner, as detailed in a previous deliverable pub-
lished at the first nfdi4energy conference [43]. This hierarchical structure enables a systematic and
comprehensive analysis of complex systems, as illustrated in Figure 1.

At the initial level, we apply STPA to the topic of interest, yielding hazard scenarios that identify
potential risks and vulnerabilities. These scenarios serve as input to define MUCs, which provide a
detailed description of the situation, including relevant actors, goals, and constraints. The MUCs are
refined through expert knowledge, incorporating domain-specific information and nuances to ensure
a thorough understanding of the system.

From these MUCs, experiments can be designed either directly from the MUC data or by combining
multiple data formats. This flexible approach allows for the creation of tailored experiments that
address specific research questions and objectives.

Our concept extends the MUC-STPA toolchain with HTD for test definition, particularly useful in lab
testing where controlled environments can simulate real-world scenarios. This addition enhances
the toolchain, allowing critical scenarios identified through reinforcement learning experiments to be
evaluated in a laboratory setting with real-time operating components. This enables researchers to
validate their findings and refine their models in a more realistic and dynamic environment.

Furthermore, integrating STIX and TAXII into this concept enables the creation of a shareable knowl-
edge database that can be expanded upon receipt of analysis results. This facilitates collaboration
and knowledge sharing among stakeholders, allowing for the aggregation of expertise and the devel-
opment of more comprehensive and accurate models. The resulting database serves as a valuable
resource for future research, providing a foundation for further analysis and experimentation.

STPA Analysis
Input that declares

situations to be analysed

MUC Template
Generation

Reinforcement Learning
Analysis

HTD Test-Case
Generation

Lab Testing

Figure 1: Information flow for the proposed concept.

3.2 Example Scenario and AI Analysis

To validate our concept and raise the technology readiness level, we selected a representative sce-
nario from the RESili8 project involving electric vehicle (EV) charging. This scenario, relevant to
both the project and its industrial partners, considers the impact of controllable and uncontrollable
wall boxes from the perspective of a Distribution System Operator (DSO). We based our analysis on
the Cigre-LV-grid, which is also used in the project’s rapid validation phase, ensuring consistency in
specifications and relevance for test case generation.

After identifying potentially harmful control actions within this grid, we initiated an AI-based analysis.
The process began with the creation of a misuse case, developed through expert interviews [46]. The
misuse case helped define specific scenarios and was used to generate a structured AI experiment
using the palaestrAI framework, which employs reinforcement learning and adversarial resilience
learning (RL-ARL). A state machine was derived from the misuse case to simulate the scenario and
guide the learning process. These state machines, published in prior work [45], were designed to
generate data for training and testing agents.

1https://pandapower.readthedocs.io/en/v2.1.0/networks/cigre.html#low-voltage-distribution-network
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Figure 2: CIGRE Low Voltage Distribution Network 1

Once the experiment design and state machines were finalized, we executed the experiments using
the arsenAI submodule of palaestrAI [46]. This tool automated the setup, including environment con-
figuration, agent initialization, and the orchestration of training and testing phases. Initially, scenario-
specific data was generated, followed by agent training and evaluation to determine whether the
agents could replicate the encoded strategies. The results are seen in Figure 3 and in Figure 4.

Figure 3: Data Generated by the State Machine. The blue line shows the state of charge of the controlled
battery and is connected to the left y-axis, while the orange line shows the setpoints given for the battery on
the right y-axis from maximal discharge to maximal charge for this battery.

Our analysis revealed that agents trained with data reflecting specific strategies could successfully
reproduce those strategies, even when guided by general objectives. While online, hybrid, and offline
training modes yielded similar results [44], the simplicity of the medium-voltage grid limited the impact
of agent actions. Consequently, we transitioned to the low-voltage Cigre benchmark grid, which better
suited the project’s offline learning goals.

The experiment data was stored in a hierarchical SQL database and could be accessed using the
Python-based CLI tool palaestrAI database query (paldaque). This utility allows users to query and
export data, including agent-generated setpoints, in CSV format. These outputs can be used in

RESili8 | Deliverable D1.2 8



Figure 4: Learned Battery Settings after Hybrid Training. The blue line shows the state of charge of the
controlled battery and is connected to the left y-axis, while the orange line shows the setpoints given for the
battery on the right y-axis from maximal discharge to maximal charge for this battery.

physical simulations of the benchmark grid to evaluate new algorithms and hardware under worst-
and best-case scenarios. Additionally, identified vulnerabilities can be shared using standardized
formats like STIX/TAXII.

The prototype we developed supports a semi-automated toolchain, beginning with manual scenario
analysis and progressing through automated data generation and agent training, ending with manual
data export for lab testing. Our findings showed that synchronizing external grid and battery setpoints
led to the most unstable grid conditions, offering the highest reward for an attacker. However, a battery
size of 0.01 MW was insufficient to cause significant disruption alone, indicating the need for larger
simulated batteries in critical test cases. Notably, even with general objectives, agents were able to
follow the strategies embedded in the training data, as seen in Figure 5.

Figure 5: Objective Value Generated by the State Machine. High Values show a good performance for the
action taken. The state machine generates good and bad rewards for the agent to learn from.
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4 Rapid Development and Validation of Smart Grid Applications

The massive deployment of distributed generators from renewable sources in recent years has led
to a fundamental paradigm change in terms of planning and operation of the electric power system.
Automation and control systems, using advanced information and communication technology, are
key elements to handle these new challenges. To counteract the increased complexity associated
with this change, new engineering and validation methods are needed [49], [6]. However, these
methods mainly focus on traditional offline and component validation, not taking the whole system
into account. Previously there used to be a large gap between offline simulations and laboratory
prototypes, a gap that would make iterating between design and testing a slow and costly process.
However, this has been addressed nowadays by the advancements in Real-time Digital Simulators
(RTDSs). Performing intermediate Hardware-in-the-Loop (HIL) tests in the form of Controller-HIL
(C-HIL), Power-HIL (P-HIL), or both, has become the state of the art [22].

The advantages of using RTDSs and HIL tests for the validation of component-level applications
are uncontested. Unfortunately, the same cannot be said when analysing the available options for
validating large-scale distributed software ecosystems operating in the context of an increasingly
digitalized power system. Thus, real-time execution and simulation of cyber-physical systems are
gathering interest in the field of large-scale digitalized electrical power systems [5], [48]. Digitalization
is widely seen in the field as a source of opportunities and benefits, yet it also presents challenges
and complexities. On the one hand, it has the potential to solve a lot of the existing problems through
intelligent coordination of distributed resources, but on the other hand, it opens the door to serious
cyber-security threats.

The transition towards massively distributed software applications interacting with the critical elec-
trical energy supply infrastructure is already on its way. However, current tools and methodologies
are not suitable to systematically test and validate the system impact of these applications before
deployment. Adhoc approaches built around real-time (RT) [12], [27] simulation platforms can be
found in the literature; however, they all suffer from scalability and interoperability issues. Some ap-
proaches based on co-simulation [24] for system-level testing exist. However, existing approaches
have one of two things in common. Either they focus primarily on the power system domain and
leave any integration of software applications up to the user. Or, if they cover both domains, they are
developed and configured manually for a specific application, where changing the testing scenario
or adding more components to the system requires considerable effort and the risk of introducing
manual errors increases. Until now, a methodology for system-level testing that provides tool support
for scaling and configuring cyber-physical energy systems.

As the complexity of scenarios emerging in the context of highly digitalized electrical power systems
continues to increase, proper test coverage becomes a real challenge. Therefore, as the number
of tests required to provide good test coverage grows exponentially, and the models and generated
data start to grow beyond the reasonable scope of manual inspection, researchers and engineers will
need to rely more heavily on automation in these processes.

4.1 Automated Cyber-Physical Testing and Validation Framework

Automated testing is a cornerstone of modern software engineering, encompassing unit to system-
level tests. Continuous integration (CI) and continuous deployment (CD) pipelines further streamline
the build, test, and release cycle, enabling rapid feedback and efficient delivery. Integrating auto-
mated testing into the development lifecycle helps detect issues early, reducing costs across the
product lifecycle [18]. It also fosters confident iteration and ensures high-quality software that meets
stakeholder expectations—especially critical in domains like electrical power systems.

The proposed Automated Cyber-Physical Testing and Validation Framework (ACTV) enhances tra-
ditional CI/CD pipelines by incorporating as-a-service tools for seamless cyber-physical integration
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Figure 6: Automated Cyber-Physical Testing and Validation Framework.

testing. It is built on five core principles: modularity, reusability, reproducibility, language-agnosticism,
and interoperability, with a focus on:

1. Efficiency : Streamlined configuration and parallel test execution.

2. Scalability and flexibility : Support for diverse power system models, evolving requirements, and
adaptable interfaces.

3. Automation: Minimization of manual tasks to accelerate validation.

4. Distributed collaboration: Support for geographically distributed testing and shared resources
like RT simulators.

ACTV bridges the gap between offline simulations and field testing for system-level validation. It
adopts a controller-software-in-the-loop (C-SIL) approach—deploying control algorithms as software
rather than hardware—enabling scalable, hardware-independent testing. This allows comprehensive
validation of critical infrastructure software alongside the systems they control.

Figure 6 illustrates the ACTV workflow. After passing standard software tests, a developer packages
the application and pushes it to the active repository (Step 1). Alongside the software, the developer
provides:

• Experiment Design (ED): Describes the physical system and software integration.

• Test Design (TD): Specifies cyber-physical test scenarios.

The remote validation pipeline is then triggered (Step 2). In Step 3, the system fetches the software
and test specifications. The Experiment Manager uses the ED to generate simulation models and
interface configurations (Step 3.1), and allocates computational resources (Step 3.2). The scenario
is deployed, and the Test Manager executes the tests (Step 3.3), collects data, and generates reports
(Step 3.4).

All tests are conducted at the Test Service Provider (TSP) site, independently of the developer. The
TSP manages the test environment and schedules execution based on resource availability. Upon
completion, results and datasets are returned to the developer for analysis.
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4.2 Rapid Development and Validation Pipeline Prototype

Building on the ACTV concept, a prototype was developed to integrate with CI/CD platforms like
GitLab and GitHub. These platforms automate software build, test, and deployment processes. The
ACTV framework extends this by attaching validation steps to the CI/CD pipeline, integrated into an
existing GitLab pipeline.
Figure 7 illustrates the validation pipeline, comprising three components: the development pipeline
(yellow), the extended pipeline (green), and the ACTV pipeline (blue).
The prototype facilitates collaboration between an External Developer and a Test Service Provider, as
shown in Fig. 7. Development and extended pipeline steps occur on the External Developer’s side,
while ACTV pipeline steps are executed by the Test Service Provider. Docker, a containerization
platform, is used to package and distribute applications and dependencies in portable containers,
enabling black-box software sharing.
The VP is triggered by a new controller algorithm feature committed to the CI/CD platform. Steps 1.1
to 1.4 involve building code, performing unit tests and static analysis, and generating documentation.
Novel validation begins at Step 2, where the External Developer packages software modules as
Docker images (Step 2.1) for system validation (Step 3). Validation starts with Step 2.2, where the
External Developer runs an ACTV agent (Docker image) provided by the Test Service Provider. The
agent interfaces with the test infrastructure, executing system-level validation via ACTV APIs.
The ACTV pipeline begins at Step 3 by retrieving test and simulation specifications from a Git reposi-
tory, configured by both parties. The Docker images prepared in Step 2.1 are pulled for the next step.
Multiple scenarios can be defined using Docker Compose files, dynamically targeted by changing
ACTV agent input parameters.
Each controller under test is packed into a Docker container (Step 2.1) and targeted in the Docker
Compose file. Docker Compose defines an application stack in a YAML file, managing multiple
containers as a single application, suitable for system-level validation.
In Step 3.1, configuration files and test containers are staged. Step 3.2 allocates system resources
and real-time simulators for validation. The grid model runs in real-time, deploying the full software
stack. Validation progresses to Step 3.3, executing pre-defined tests and recording data. Step 3.4
archives reports and data, transmitting them back to the user as job artifacts accessible via GitLab
UI for offline analysis. The External Developer can monitor test progress in real-time through ACTV
agent logs (Step 2.2).
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Figure 7: Validation pipeline prototype.

4.3 Example Use Case

In this use case, an External Developer wants to validate a smart charging algorithm for electric
vehicles (EVs). The Test Service Provider provides tools to test the algorithm.
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For the use case, the grid in Figure 8 was used. It represents the residential feeder of the CIGRE Eu-
ropean low-voltage distribution network benchmark [37], deployed in a real-time simulator (Opal-RT)
using ACTV to validate the EMS. The CIGRE-Network, designed for integrating distributed energy
resources (DER), aligns with the SMGW infrastructure and EMS objectives.
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Figure 8: CIGRE network [37] with EMS controllers.

The grid model features eight nodes (yellow in Figure 8), each representing a household with typical
loads like appliances and EV charging stations. The Node Profiler (NP) module (red) from AIT ap-
plies historical load profiles to the grid and adjusts them based on MQTT topic subscriptions (e.g.,
PEVSet).
The NP and grid model, stored in the external repository, are essential for validating the Control Box
and EMS. The validation process begins with the developer committing a new feature, leading to the
creation of Docker images for the Control Box and EMS.
The ACTV stage deploys the grid, NP, Control Box, and EMS images on the Test Service Provider’s
servers. This automated process allows users to monitor validation pipeline progress via logs. During
real-time simulation, the EMS receives grid measurements via MQTT, and the Control Box responds
to DSO-imposed consumption limits. The EMS adjusts controllable loads to adhere to these limits,
transmitting new setpoints (PEVSet) to the NP, which modifies EV profiles accordingly. All signals
exchanged during simulation are recorded.

4.4 Test Results

Upon validation pipeline completion, results are presented as artifacts. Figure 9 shows validation
outcomes for node R1. The first graph displays the upper boundary of active power (blue) and
consumption (red). At 15:06:30 (E1), a new DSO setpoint limits household power to 11kW, and
the red line adjusts accordingly. At 15:08:30 (E2), a new 8kW limit is imposed, and EV charging is
adjusted.
The second plot in Figure 9 shows historical appliance and EV charging profiles (yellow and green).
The green line represents the adjusted EV charging profile post-DSO limitations, demonstrating the
EMS’s ability to manage consumption within boundaries despite fluctuating appliance loads.
The validation pipeline automates system-level validation of the Control Box and EMS, enabling easy
retriggering for new software features.
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Figure 9: Validation results for node R1.
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5 Fault Localization in Heterogenous Distribution Grids

Electrical faults and anomalies in high-voltage transmission lines and medium-voltage distribution
lines risk interrupting the power supply to large numbers of customers. Line-to-earth fault currents
may, for example, result from interactions between power lines and growing tree branches, or from
the gradual decay in cable insulation. Often there are early signs of such developing fault conditions,
but the resulting earth currents have short duration and are not large enough to trigger the regular
protection relays. These fault conditions can, therefore, go unnoticed until they cause a major power
outage. However, with access to high-resolution, high-frequency measurements of voltage and cur-
rent, it is possible to detect and estimate the location of developing faults at an early stage [17]. Such
detection systems have many advantages: The line/cable can be repaired before any customer is
affected by an outage, and the repair can be scheduled ahead of time, thereby improving system
resilience. A reasonable estimate of the distance to the fault can also simplify the repair process
since lines can easily span several kilometers. All these factors reduce the cost to both the system
operator and the customer.

According to the existing literature, there are four broad classes of methods to estimate fault location:
steady-state methods [1, 20], transient-based methods [9, 10], travelling-wave methods [2, 11, 23],
and data-driven methods [34, 47]. Helpful overviews are provided in [17, 28]. Many of these rely on
measurements from at least two points on the line. In contrast, we will here mainly consider methods
that rely on a single measurement point (in a primary substation). Data-driven methods depend on
large datasets for training, which may not be available. The steady-state and transient methods are
typically based on lumped parameter models.

We consider here an example of a medium-voltage feeder system, which is described in Section 5.1.
We present three methods for fault localization: In Section 5.2, we apply the so-called Electro-
Magnetic Time Reversal (EMTR) method to the problem and evaluate its performance. The EMTR
method belongs to the class of travelling-wave methods. In Section 5.3, we apply what we call the
Lumped Parameter Single Feeder (LPSF) method, which is more related to the class of steady-state
methods. In Section 5.4, we present a more theoretical approach to the problem based on Partial Dif-
ferential Equation (PDE) models. Finally, in Section 5.5, we discuss relations between the methods
and possibilities for future work.

5.1 Example Feeder Model

In this section, we introduce the example feeder used in the fault localization evaluations that follow.
It is a rural 11 kV feeder located in Sweden. DLab has provided the model and data corresponding
to voltage and current measurements recorded during actual faults that previously occurred in the
network. A detailed simulation model of the feeder was developed for PowerFactory, a power systems
simulation tool often used in the field.

A simplified line diagram is shown in Figure 10. In this diagram electrical busses are represented
by the nodes of the graph, while the electrical lines connecting the busses correspont to the graph
edges. The substation is marked by the green node (bus 10). The feeder has cable (in red) and
overhead line (blue) segments. The number on each line segment indicates its length (in km).

In the performed studies, we considered various fault scenarios in 11 different locations along the
path leading from bus 20 to bus 82. The distance from the substation to bus 82 is about 4.6 km. Dur-
ing development, additional simulation scenarios were considered for evaluation purposes, including
simplifying the topology, removing connecting branches, and converting the feeder to a uniform ca-
ble/overhead single-line feeder.

The anomaly/fault scenarios we considered are single-line-to-earth faults at unknown distances from
the measurement point. The measurement point is, unless otherwise stated, located in the substation
in bus 10. A complication is that the feeder is equipped with a Petersen coil, see, for example,
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Figure 10: Diagram of the distribution feeder we considered for our study. The substation is in bus 10, and we
consider faults in 11 locations on the path leading from bus 20 to bus 82.

[17], tuned to minimize the magnitude and duration of fault currents. This makes the detection and
localization of the faults incredibly challenging.

5.2 EMTR Method

One of the notable techniques within traveling-wave methods is known as the EMTR method. This
approach holds promise in accurately localizing faults and demonstrating high precision and resolu-
tion. Initially introduced in [29], subsequent advancements have been made, with a detailed overview
available in [41]. However, it needs further validation to assert its effectiveness to locate faults in
complex distribution networks.

We validated its performance considering the single feeder network in Figure 10. Validation shows
that the method is able to accurately localise faults. However, a single measurement point may not
be sufficient to locate faults throughout the network. A possible explanation is given, and the use of
a second sensor is proposed to extend the performance of the method.

5.2.1 Method description

The EMTR method has originally been formalized as follows. The fault localization process can be
delineated into two main phases. In the initial phase, termed the forward propagation stage, the volt-
age and/or current transients resulting from a fault event are captured at one or more measurement
points distributed throughout the network [41]. Following this, in the second phase, known as the
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backward propagation stage, the recorded signals are time-reversed and numerically reintroduced
into a detailed model of the network. This simulation can be executed using either time-domain sim-
ulation tools [42] or in the frequency domain [19]. Subsequently, upon identifying a set of potential
fault locations, individual simulations are conducted for each candidate location, where the fault is
linked to the respective spot. Operating under the assumption that optimal focusing occurs when the
backward-propagation medium aligns with the forward-propagation medium, i.e., when the fault is lo-
cated at the actual fault position, the fault’s precise location is determined by maximizing a predefined
metric that quantifies the focusing effect among the chosen candidates.

HDT (jω)Z0

−

+

vm
ZF

vf(t)

Figure 11: Forward propagation

HRV (jω;xg)I0 Z0 ZF

ig

Figure 12: Backward propagation

In Figure 11 and Figure 12 the two phases are depicted, where vf is the fault voltage, Zf the fault
impedance, Z0 the sensor impedance, vm the measured voltage, and HDT (jω;xf ) is the transfer
function from vf to vm, which depends on the location of the fault xf . In the backward propagation
diagram, the recorded signal vm is re-injected into the network model using the Norton equivalent
composed by I0 = vm(−t)/Z0 and Z0. HRV (jω;xg) is the transfer function from I0 to ig, the fault
current, which depends on the guessed fault location xg. In [4], considering a single transmission
line, it is proved that HDT (jω;xf ) = HRV (jω;xg) if and only if xf = xg. It is reasonable to expect that
this condition holds also for more complex networks, and it is validated later.
The metric proposed in [29] is the fault current energy that reads as follows:

||ig(t;xg)||2 =
∫

|ig(t;xg)|2dt (1)

or in frequency domain as2:

||ig(t;xg)||2 =
∫

|V ∗
m(jω)HRV (jω;xg)|2dω (2)

Finally, the fault location is estimated as

x̂g = argmax
xg

||ig(t;xg)||2 (3)

The frequency form of the fault current energy in (2) gives a spectral interpretation why this metric
is a proper metric to determine the fault location. In fact, the metric can be seen as the covariance
between the squared magnitude of the recorded signal Vm(jω) and the transfer function HRV (jω;xg).
Therefore, the metric is used to compare the spectrum of the recorded voltage with the spectrum of
different fault location dependent models, and the fault location is selected as the one with higher
spectrum similarity.
The calculation of the metric can be performed in the time domain as in (1) or in frequency domain
as in (2). While in the time domain, for each guessed fault location a simulation has to be performed
re-injecting the fault transient and recording the resulting fault current ig, in the frequency domain the
impulse response HRT for each fault is precomputed numerically, stored and used to compute the
metric, as shown in (2). In case a large number of fault location needs to be tested, the frequency
domain is preferable since all the impulse responses can be pre-computed and the computation of
the metric is much faster than running all the simulations in the time domain. For this reason, the
frequency domain metric was adopted for this study.

2Here Z0 is ignored since it does not depends on xg
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5.2.2 Method implementation and validation

The method is tested on the network shown in Figure 10. A model of the network under test has
been developed in DIgSILENT PowerFactory simulation software. Although not shown, loads are
connected to some buses of the network, through transformers. Since the method uses the high
frequency line dynamics to identify the fault location, the distributed parameter line model is adopted.
To correctly simulate the model, a small integration time needs to be chosen. This depends on the
shorter line propagation delay. In our case, it has been chosen to be 100ns.

The fault transient sensor is placed at the substation at bus 10.

To validate the method, we consider a fault for each bus in the network and validate the capability of
the method to correctly identify that bus as the fault location, considering all the buses as possible
fault locations. Only single-phase to ground faults are considered in this study since it is the most
common fault type. The fault is assumed to be purely resistive with resistance equal to 0.1Ω, therefore
considering an almost solid fault.

For each possible fault location, the respective transfer function HRV is computed. To do so, the
impulse response from the input variable I0 to the output variable ig is simulated numerically. Then,
the transfer function is obtained by applying the FFT to the resulting signal. Since we are working
with a three-phase system, for each phase the transfer function is computed and the metric in (2) is
modified as

||ig(t;xg)||2 =
∫
B

∣∣∣∣∣∣
∑

ph=a,b,c

V ∗
ph,m(jω)HRV

ph (jω;xg)

∣∣∣∣∣∣
2

dω (4)

where the fact that the integral is computed over the frequency band B is also emphasize.

5.2.3 Network spectral analysis

Before proceeding with the validation, a spectrum analysis is performed. First, we validate the as-
sumption HDT (jω;xf ) = HRV (jω;xg) if and only if xf = xg still holds for complex networks. In
Figure 13 the backward transfer function at bus 37, i.e. HRV

37 , is compared with the respective forward
transfer function HDT

37 and the transfer functions of the two closest buses 35 and 38. As one can
check, the transfer functions match perfectly only when the same fault location is assumed in the
forward and backward transfer function, validating the mentioned assumption.

Figure 13: Spectrum of forward and backward transfer functions

Secondly, we compare the spectrum of the generated fault transient, see Figure 14, to check which
frequency band to take into consideration when computing the location metric. As one can notice,
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each fault generates a unique signature in the spectrum, and this aspect is the underlying fundamen-
tal behind the EMTR method. In the low frequency band, below 3 kHz, the resonance peaks are very
close each other, therefore it is preferable to exclude this band from the metric (4) since it can give
rise to wrong fault location estimation. Given that the sensor bandwidth must be as low as possible
to reduce the costs of the sensor device, the metric (4) is calculated considering the frequency band
B = [3, 20] kHz.

Figure 14: Fault spectrum for different fault locations

5.2.4 Results

In Figure 15a the results of the EMTR method applied to the network under test are shown. For each
bus fault on the vertical axis, the metric in (4), normalized with respect to the maximum value, is
shown in the respective row. If the maximum value, i.e. one, is reached on the same bus of the fault,
the algorithm identifies the fault location correctly, otherwise it does not.

As it can be seen, for buses numbered from 10 to 52, the matrix is diagonal dominant, which implies
high estimation accuracy. However, for buses 53 to 81, the algorithm is unable to accurately deter-
mine the correct fault location. This aspect has been further analyzed and the reason for this lies in
the network topology and the use of different types of lines, cabled and overhead lines, which present
different propagation characteristics.

(a) Original network (b) Overhead lines replaced by cables

Figure 15: Fault location validation for sensor 10
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5.3 LPSF Method

As an alternative to the EMTR method for fault localization, we will investigate a method developed in
the PhD thesis [16]. The method is based on a simplified lumped-parameter model of a single feeder
and is denoted the LPSF method3 in the following. Based on steady-state phasor measurements of
currents and voltages at the substation and assuming the faulty branch is known, the distance for
the fault is estimated. The method is described in some detail in the following. In comparison to
EMTR, the LPSF does not require repeated simulation of a complete network model and is, in this
sense, more “lightweight.” On the other hand, the LPSF method requires a numerical solution to an
optimization problem, which generally is non-convex. Furthermore, the theoretical justification and
understanding of the LPSF method are less developed.

In this section, we evaluate three versions of the LPSF method on the example feeder in Section 5.1,
both in a simulated and a real scenario.

5.3.1 Method Description

The method in [16] assumes that the fault occurs at a relative distance x, 0 ≤ x ≤ 1, from the mea-
surement point (the primary substation) in a single feeder, as is illustrated in Figure 16. The modeling
assumes steady-state conditions before and after the fault occurs and decomposes the three-phase
model using standard symmetrical components [15]. Here, we denote the positive sequence by sub-
script 1, the negative sequence by subscript 2, and the zero sequence by subscript 0. The model is
relatively standard, except for the shunt elements in the zero sequence, which account for capacitive
coupling to earth (Y0) and neighboring feeders (Y0bg), as well as Petersen coil impedance (ZPC) and
resistance (RP). Figure 16 displays the situation before the fault, and Figure 17 during a single-phase
to earth fault (assuming a steady state has had time to be established).

Remark 5.1 Note that the model in Figure 17 assumes that all loads are allocated after the fault
location. This will not always be the case in the investigated fault scenarios for our example feeder in
Section 5.1. Part of the evaluation here is to clarify the importance of this assumption.

Next, we will present three variations of the LPSF method.

Fault Current Measurement (OPT1). The fault current IF in Figure 17 is generally not measurable
since the fault location is unknown. In this first instantiation of the LPSF method, we assume it is
available, however. The main reason for making this assumption is that it provides insights on the
“best possible” fault distance estimates using a simple LPSF model.

The estimated distance x of the fault is obtained by solving the optimization problem

minimize
∣∣∣∣Vph − x(Z0I0 + Z1I1 + Z2I2) + x2

Y0Z0

2
V0 − 3RFIF

∣∣∣∣
subject to 0 ≤ x ≤ 1,

0 ≤ RF,

(OPT1)

with variables x, RF ∈ R, and fault recording Vph := V0 + V1 + V2, I0, I1, I2 ∈ C, and IF ∈ C. Note
the fault current IF is here the sequence-component value (1/3 of the value of the fault current itself),
and that the fault resistance RF is assumed unknown and is estimated by the method.

Remark 5.2 To solve (OPT1) (and (OPT1’) and (OPT2) in the following), we have used a Sequential
Least Squares Programming (SLSQP) method in the Python function scipy.optimize.minimize. To
initialize the iterative optimization method, we use (x,RF) = (0, 0).

3Our terminology.
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Figure 16: Sequence diagram of the LPSF model (pre fault). Adapted from [16, Chapter 4].

Figure 17: Sequence diagram of the LPSF model (during fault). Adapted from [16, Chapter 4].

Model-based Fault Current Estimate (OPT1’). Using the method in [16], the estimated distance x
of the fault is computed by solving the optimization problem

minimize
∣∣∣∣Vph − x(Z0I0 + Z1I1 + Z2I2) + x2

Y0Z0

2
V0 − 3RFÎF

∣∣∣∣
subject to 0 ≤ x ≤ 1,

0 ≤ RF,

(OPT1’)
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with variables x, RF ∈ R, and fault recording Vph := V0 + V1 + V2, I0, I1, I2 ∈ C, and the following
model-based estimate of the fault current [16]

ÎF =

(
1

3RP
+

1

3ZPC
+ Y0 + Y0BG

)
V0 ∈ C. (5)

Notably, this method does not require measurement of the fault current. Instead, model parameters
of capacitive coupling and the Petersen coil are required in (5). Regarding (5), Habib [16, Chap-
ter 4] remarks, “However, the proposed solution is sensitive to fault resistances and requires good
knowledge of zero sequence parameters.” Thus the comparison with (OPT1) is of interest.

Data-based Fault Current Estimate (OPT2). The method (OPT1’) requires a detailed model of the
zero sequence model parameters. Our final version (OPT2) attempts to circumvent this (potential)
sensitivity by exploiting data from recurrent but independent faults at the same location x. We assume
that N > 1 recurrent faults have been recorded and that we have obtained voltage and current phasor
measurements at the substation, as before. A quantity from fault i has superscript (i) next. The
measurements will be stacked into an N -dimensional vector CN , and the model misfit is evaluated
using a p-norm, ∥ · ∥p, with

p ∈ {1, 2,∞}.

Instead of using (5), we here make the assumption

I
(i)
F ≈ TFI

(i)
0 , TF = |TF|ejϕ ∈ C, |ϕ| ≤ π/2, (6)

for i = 1, 2, . . . , N . That is, for all fault scenarios at location x, a constant complex ratio TF of the
measured zero sequence current I0 is related to the fault current IF. For the method to work, it is
assumed that each fault scenario has a sufficiently different fault resistance R

(i)
F , such that the new

optimization variables K(i) := R
(i)
F |TF | ∈ R can be determined.

Remark 5.3 The constraint |ϕ| ≤ π/2 in (6) ensures that the fault current and zero sequence cur-
rent are somewhat in phase, which seems reasonable from the sequence diagram. However, this
constraint is not critical and can easily be relaxed to another bound in (OPT2).

The estimated distance x is computed by solving

minimize

∥∥∥∥∥∥∥∥∥∥


V

(1)
ph − x(Z0I

(1)
0 + Z1I

(1)
1 + Z2I

(1)
2 ) + x2 Y0Z0

2 V
(1)
0 − 3K(1)ejϕI

(1)
0

V
(2)

ph − x(Z0I
(2)
0 + Z1I

(2)
1 + Z2I

(2)
2 ) + x2 Y0Z0

2 V
(2)
0 − 3K(2)ejϕI

(2)
0

...
V

(N)
ph − x(Z0I

(N)
0 + Z1I

(N)
1 + Z2I

(N)
2 ) + x2 Y0Z0

2 V
(N)
0 − 3K(N)ejϕI

(N)
0


∥∥∥∥∥∥∥∥∥∥
p

subject to 0 ≤ x ≤ 1,

− π/2 ≤ ϕ ≤ π/2

0 ≤ K(i), i = 1, 2, . . . , N,

(OPT2)

with variables x, ϕ, K(i) ∈ R, and fault recordings V
(i)

ph := V
(i)
0 + V

(i)
1 + V

(i)
2 , I(i)0 , I(i)1 , I(i)2 ∈ C.

5.3.2 Simulation Results (OPT1)

In this test, we evaluate (OPT1) on the feeder shown in Figure 10. More detailed simulations results
can be found in [31]. As mentioned, (OPT1) assumes the fault current is known, and as such, the
results here provide insight into the best possible results from the LPSF method.
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The feeder in Figure 10 has a mixture of overhead line and cable sections. In contrast, the LPSF
method assumes a uniform line impedance4. To further check the accuracy, we first, in simulation,
use cable sections and disconnect all branches to come as close as possible to the LPSF model. We
then simulate faults with RF = 50Ω in 11 locations gradually moving away from the substation. The
obtained location estimates x, together with the actual distances, are shown in Figure 18. As can be
seen, the estimates are very accurate and verify that the method under idealized conditions performs
very well.
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Figure 18: Solution to (OPT1) assuming a uniform cable model, all load branches disconnected, and RF = 50Ω.

In Figure 19, we perform similar tests with the actual overhead line and cable sections and load
branches along the feeder for four fault scenarios. Notice that this feeder is much more complex
than what is assumed in Figure 17, and it is by no means clear how well, or if, (OPT1) will work.
The scenarios with RF = 3000Ω and 5000Ω are high-ohmic faults resulting in tiny fault currents
and are expected to be especially challenging. For the low-ohmic faults RF = 10Ω and 50Ω, the
location estimates are not as accurate as in Figure 18, but up to around 2 km are still very good for
the low-ohmic faults. Also, beyond 2 km, the low-ohmic estimates could be of value in practical fault
localization scenarios.
In the challenging high-ohmic cases, the estimates start to diverge after around 1 km. It is also
interesting to notice that the estimates are almost identical for RF = 3000Ω and 5000Ω.

5.3.3 Experimental Results (OPT1’) and (OPT2)

DLab provided fault recordings from an actual fault on the feeder in Figure 10. Two different record-
ings, Scenario 14777 and 14783 from the same location x = 2.478 km are available. For reference,
the length of the feeder is 4.635 km. Scenario 14777 was recorded by the dLab system in the actual
feeder on August 20, 2022, at 06:41:48. The fault was classified as “Dense earth fault transients
that evolves into short circuit.” The Scenario 14783 was recorded on the same date, at 09:01:38
(about 2 hours and 20 minutes later), as was classified as “Energizing a faulted line, faulty surge
arrestor.” Since the true fault current is not measured, only (OPT1’) and (OPT2) are applicable here.
The results are in Table 1.
Notably, (OPT1’) provides a reasonable location estimate in Scenario 14783. However, the result
for Scenario 14777 is far beyond the actual fault location, just as in the simulation study. Again, this
illustrates the sensitivity of the fault estimate (5).

4It is possible to take non-uniform line segments into account by introducing piece-wise linear (in x) line impedances.
We leave this for future work.
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Figure 19: Solution to (OPT1) assuming the full feeder model, with a mixture of cable and overhead line
sections, load branches connected, and RF = 10Ω, 50Ω, 3000Ω, and 5000Ω.

The method (OPT2) provides an estimate using both scenarios (N = 2). The estimate does not
depend significantly on the choice of p-norm, and has a relative accuracy of around 11%. This is
encouraging, but further investigations are suggested.

Table 1: Results from experimental data.

Scenario Method True x Estimated x Relative Error

14777 (OPT1’) 2.478 km 4.635 km 87.0%
14783 (OPT1’) 2.478 km 2.874 km 16.0%
14777+14783 (OPT2), p = 1 2.478 km 2.749 km 11.0%

14777+14783 (OPT2), p = 2 2.478 km 2.749 km 10.9%

14777+14783 (OPT2), p = ∞ 2.478 km 2.749 km 10.9%

5.4 PDE-Method

This method focuses on estimating the fault distance along a single transmission line, resulting in
a parameter estimation problem for an infinite-dimensional linear dynamical system with one spatial
variable.This problem pertains to estimating the fault distance along a single branch in Figure 10,
once the identity of the branch has been determined by other methods. A frequency-domain least-
squares approach is adopted. Since the time of the fault is unknown, and voltages and currents
are measured at only one end of the line, distance information must be extracted from the post-fault
transients. To properly account for high-frequency transient behaviour, the line dynamics are mod-
elled directly by the Telegrapher’s equation, rather than the more commonly used lumped-parameter
approximations. A closed-form expression for the transfer function is first derived. Then, nonlin-
ear least-squares optimisation is employed to search for the fault location. Requirements on fault
bandwidth, sensor bandwidth and simulation time-step are also presented. The following sections
provides an overview of the method and simulation results. More details have been published in [33].
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5.4.1 Modelling

Sensor Fault

u(t− tf )y(t) v(t, x)
i(t, x)

x
x = ℓx = 0

Figure 20: Distribution line diagram

Consider Figure 20. Let v(t, x) denote the voltage at time t ≥ 0 and position x ≥ 0 along an electrical
distribution line, and i(t, x) the corresponding current. Sensors measure the voltage and current at
position x = 0. Suppose a fault occurs at position ℓ > 0 along the line. Restricting attention to
the segment of the line between fault and sensors, we assume both v : [0,∞) × [0, ℓ] → R and
i : [0,∞)× [0, ℓ] → R are continuously differentiable maps. The spatio-temporal relationship between
current and voltage is then modelled by the Telegrapher’s equation[

C 0
0 L

] [
∂v
∂t
∂i
∂t

]
=

[
0 −1
−1 0

] [
∂v
∂x
∂i
∂x

]
−
[
G 0
0 R

] [
v
i

]
, (7)

where R,L,C,G ≥ 0 are constants denoting, respectively, the distributed line resistance, inductance,
capacitance, and conductance, per unit length. We assume, in particular, that R,L,C > 0. The goal
is to estimate the fault location ℓ from the sensor measurements v(t, 0) and i(t, 0).

5.4.2 Numerical Case Study

We now tackle a particular instance of the fault localization problem involving a 220kV distribution
line in the Swedish power grid. The line parameter values in Table 2 are derived from [38, Table 4],
after conversion into SI units. We now simulate the fault in Table 2, and estimate its location using the

Table 2: Parameter values for fault localisation case study

Parameter Symbol Value Units

Line resistance R 5.3900× 10−5 Ωm−1

Line inductance L 1.3114× 10−6 Hm−1

Line capacitance C 9.1001× 10−12 Fm−1

Line admittance G 0 Sm−1

Base voltage V0 220× 103 V
Base current I0 454.55 A
Fault resistance r 5 Ω
Fault time tf 0.01 s
Fault distance ℓ 2000 m

proposed least-squares procedure. This example serves as a case study to illustrate the main steps
involved, highlight important issues, and develop guidelines for both design and simulation.

5.4.3 Bandwidth considerations

Figure 21 plots the magnitude spectrum of the transfer function H for the given problem data, at
different values of ℓ. It illustrates a general pattern that can be empirically observed:
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Figure 21: Magnitude spectrum of H(s; ℓ), given data in Table 2, for different fault distance values.

• For each value of ℓ, the frequency response of both components are flat until a critical frequency
ω⋆, at which they begin to change.

• The DC gains h1 := |H1(0; ℓ)|, h2 := |H2(0; ℓ)| are approximately constant with ℓ.

• The critical frequency ω⋆ decreases with ℓ.

Such behaviour has important practical ramifications for modelling, sensing, and simulation.

5.4.4 Fault modelling

Our proposed estimation scheme relies on an assumed fault profile u. The ideal fault (from a local-
isation perspective) is an impulse, because it excites all frequencies equally. This is also consistent
with the sudden and fleeting nature of line-to-earth faults. However, the finite sensor bandwidth ωb

implies that all information beyond this frequency is lost. In simulation, numerical PDE solvers must
resort to finite time-steps, so they are also unable to reproduce dynamics beyond a certain frequency.
For simulation purposes, we therefore model the fault as a Gaussian pulse

u(t) =
1

σ
√
2π

e−
t2

2σ2 ,

which approaches the unit impulse as σ → 0. Its Fourier Transform is a Gaussian pulse in the
frequency domain,

U(jω) = e−
ω2σ2

2 ,

which is clearly bandlimited. Referring to Figure 21, the critical frequency for a fault at ℓ = 2 km is
ω⋆ ≈ 104 rad/s. We choose σ = 3.0349 × 10−5 s to obtain a fault bandwidth of ωf = 105 rad/s > ω⋆.
The fault spectrum is plotted in Figure 22.

Remark 5.4 A Gaussian fault profile is chosen here as an example of a bandlimited pulse, because
PDE solvers and physical sensors cannot reproduce arbitrarily high frequencies. In reality, it is difficult
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to know the true current and voltage signals at the fault location, because sensors are never present
exactly where a fault occurs. Different types of faults are possible [14, Chapters 8 & 10], and they are
expected to produce different profiles. Future work will explore the use of unknown input observers [3,
13] to deal with uncertainty in the fault profile. In a nominally balanced 3-phase system, it may even
be possible to estimate the fault current profile from the symmetrical zero sequence component.
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Figure 22: Magnitude spectrum of fault profile, for σ = 3× 10−3.

5.4.5 Simulation of PDE dynamics

A fixed simulation time-step of Ts > 0 effectively models a sensor with the same sampling period,
which corresponds to a sensor bandwidth ωb = π

Ts
equal to the Nyquist frequency. In order to faith-

fully simulate the line dynamics over the frequency range [ω⋆, ωf ], we must have ωb ≫ ωf . For
this case study, let Ts = π

10ωf
, which corresponds to ωb = 10ωf . To simulate the line dynamics,

we have used the PIETOOLS [36] numerical PDE solver, which employs Petrov-Galerkin projection
onto a polynomial basis, together with the backward-difference discretisation of temporal derivatives.
The simulated sensor outputs are plotted in Figure 23. The non-dimensionalisation is necessary for
backward-difference to be numerically stable under this choice of time-step and parameter values,
but it may not remain so for arbitrarily small time-steps. If numerical instability is encountered for the
chosen time-step, other integration schemes may be required. In particular, [8,21,26,30,35] propose
numerical methods that are specialised for the Telegrapher’s equation. For a real-world localisation
problem, the voltage and current initial conditions would reflect the steady-state solution of the power
line in response to sinusoidal forcing. However, due to linearity, the corresponding frequency compo-
nent can simply be removed from the output spectrum before performing the minimisation. This step
has been omitted for simplicity. Instead, the line has been simulated with zero initial conditions.

5.4.6 Estimation

To illustrate the effect of fault bandwidth and simulation time-step on estimation quality, Figure 24
plots the cost function for different values of ωf and ωb = π

Ts
. For the blue line, the guidelines are
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Figure 23: Simulated current and voltage at fault location, together with corresponding sensor outputs.

followed, with bandwidth values as previously stated: ωb = 10ωf and ωf = 10ω⋆. For the red line,
the fault bandwidth ωf is reduced to a tenth of the critical frequency ω⋆, and for the yellow line, the
sensor bandwidth ωb is reduced to a tenth of the fault bandwidth. The latter are almost completely
uninformative. Focusing on the blue line, its shape suggests that gradient descent will converge to
one of two global minima, for any non-zero initial condition. The observed symmetry means that
unconstrained optimisation can be employed, if the sign of the result is ignored. For this instance
of fault localization problem, given an initial guess of 1 m (i.e., a 1.999 km initial error), MATLAB’s
fminunc returns a location estimate within 4.21 s with a 5.39 cm error. A standard HP Elitebook was
used, with Intel CORE i7 vPRO processor and 32 GB RAM, running MATLAB R2022b on Windows 10.

5.5 Discussion

In this section, we have introduced three methods for fault distance localization. The first two meth-
ods, EMTR and LPSF, are adapted for direct fault localization in the network in Section 5.1. In
contrast, the final method based on PDE models is better suited for sampling rate and theoretical
feasibility studies.

The EMTR method belongs to the class of traveling wave methods, and is characterized by a need
for a high sampling rate and a detailed simulation model of the entire grid. Localization is done by
comparing the current’s signal energy at hypothesized fault locations. The location with the largest
signal energy is the estimated fault position. In contrast, the LPSF method uses a simplified single
feeder model with no branches. It assumes a steady state is reached during the fault and does not
exploit the transient data leading from the nominal to the faulty state.

As shown in this section, both EMTR and LPSF provide good fault location estimates in many cases.
However, both methods struggle with high-ohmic faults since the fault current is so small that reliable
estimates are hard to obtain. Both methods also struggle with heterogeneous networks. In the EMTR
method, heterogeneity causes wave reflections, which interfere with the actual fault signal. A possible
solution is to introduce a second sensor. Optimal placement of additional sensors is a good problem
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Figure 24: Cost J(ℓ) as a function of ℓ, under different fault and sensor bandwidths. Blue plot: ωf = 10ω⋆, ωb =
100ω⋆. Red plot: ωf = 0.1ω⋆, ωb = 100ω⋆. Yellow plot: ωf = 10ω⋆, ωb = ω⋆. Frequencies are in rad/s.

for future work. Search methods that drive the exploration instead of examining every single fault
location can also be explored.

The PDE method can be extended by relaxing the assumption that the fault voltage and impedance
is known. This is the subject of ongoing work. For the LPSF method, a possible improvement for
heterogeneous networks is introducing piece-wise linear (in fault distance) impedance and admit-
tance models. However, the main point for improvement is the development of a more reliable fault
current estimator. Both a model and a data-based current estimator were studied here. The data-
based one in (OPT2) was more reliable in the cases considered but struggled when the lines were
heterogeneous. For future work, we can consider larger classes of fault current estimators, such as
ÎF(x,RF, I0; θ), where θ is a vector of weights in a neural network.

RESili8 | Deliverable D1.2 29



6 Conclusion

The RESili8 project has made significant strides in redefining resilience for Cyber-Physical Energy
Systems (CPESs) in the context of the digital energy transition. Recognizing the limitations of tra-
ditional resilience strategies, the project has developed a comprehensive solution package that inte-
grates AI-based analysis, automated validation, and advanced fault localization techniques. These
innovations collectively address the multifaceted challenges posed by the increasing complexity, de-
centralization, and digitalization of modern energy systems.

One of the project’s key achievements is the development of a semi-automated AI toolchain that
leverages expert knowledge and reinforcement learning to generate realistic threat scenarios and
test cases. This toolchain enables faster and more effective validation of energy applications in lab
environments, ensuring that critical vulnerabilities are identified and addressed early in the devel-
opment process. The integration of STPA, MUCs, and HTDs provides a structured and scalable
approach to resilience analysis.

The Automated Cyber-Physical Testing and Validation Framework (ACTV) represents another major
milestone. By embedding system-level validation into CI/CD pipelines, ACTV facilitates continuous
testing of smart grid applications in real-time simulation environments. This approach not only en-
hances test coverage and reproducibility but also supports collaboration between developers and test
service providers across distributed locations.

In the domain of fault localization, RESili8 has conducted a thorough evaluation of three complemen-
tary methods—EMTR, LPSF, and PDE-based modeling. Each method offers unique strengths and
trade-offs, and their combined insights contribute to a more robust understanding of fault detection in
heterogeneous distribution networks. The project’s use of real-world data and simulation models has
further validated the practical applicability of these techniques.

While the project has delivered substantial technical outcomes, it also highlights areas for future
research and development. These include improving the scalability of AI-based analysis, enhancing
the accuracy of fault localization in complex networks, and expanding the ACTV framework to support
a broader range of applications and test scenarios. The integration of data-driven and model-based
approaches remains a promising avenue for further exploration.

In conclusion, RESili8 has laid a strong foundation for the next generation of resilient energy systems.
Its contributions extend beyond technical innovations to include methodological frameworks and col-
laborative practices that can be adopted by stakeholders across the energy sector. As the energy
landscape continues to evolve, the principles and tools developed by RESili8 will play a vital role in
ensuring the security, reliability, and sustainability of future energy infrastructures.
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Abbreviations

ACTV . . . . . . . . . . . . . . . . . Automated Cyber-Physical Testing and Validation Framework

C-HIL . . . . . . . . . . . . . . . . . Controller-HIL

EMTR . . . . . . . . . . . . . . . . . Electro-Magnetic Time Reversal

HIL . . . . . . . . . . . . . . . . . . Hardware-in-the-Loop

HTD . . . . . . . . . . . . . . . . . . Holistic Test Description

LPSF . . . . . . . . . . . . . . . . . Lumped Parameter Single Feeder

MUC . . . . . . . . . . . . . . . . . Misuse Case

P-HIL . . . . . . . . . . . . . . . . . Power-HIL

PDE . . . . . . . . . . . . . . . . . . Partial Differential Equation

RTDS . . . . . . . . . . . . . . . . . Real-time Digital Simulator

STPA . . . . . . . . . . . . . . . . . Systems Theoretic Process Analysis
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